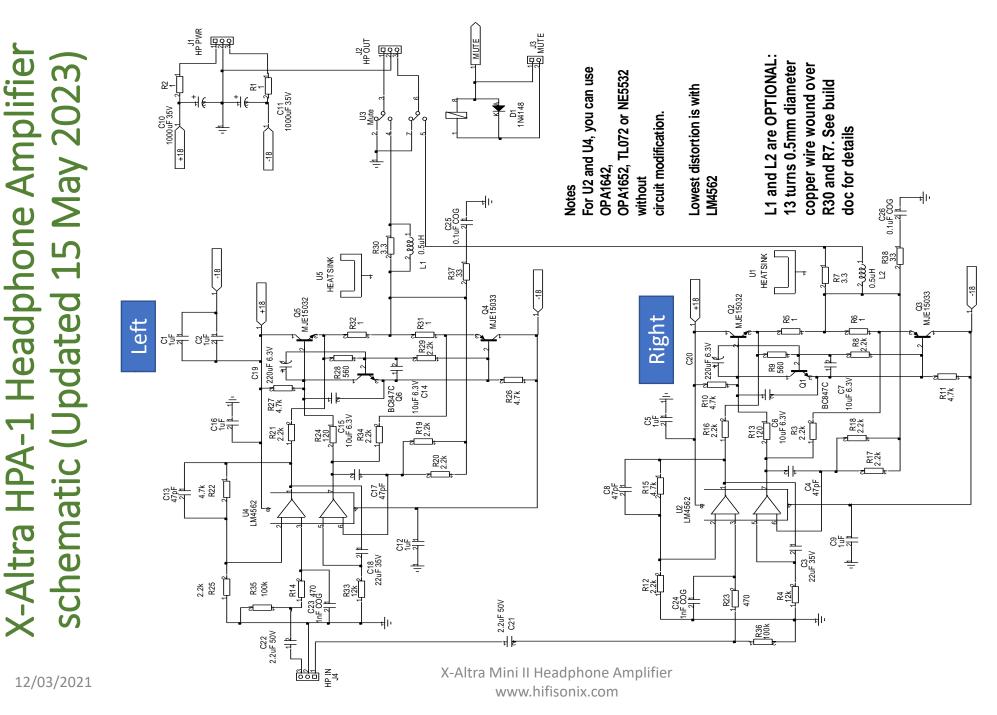
X-Altra HPA-1 Headphone Amplifier

This project uses SMD components down to SOT23 and 0805

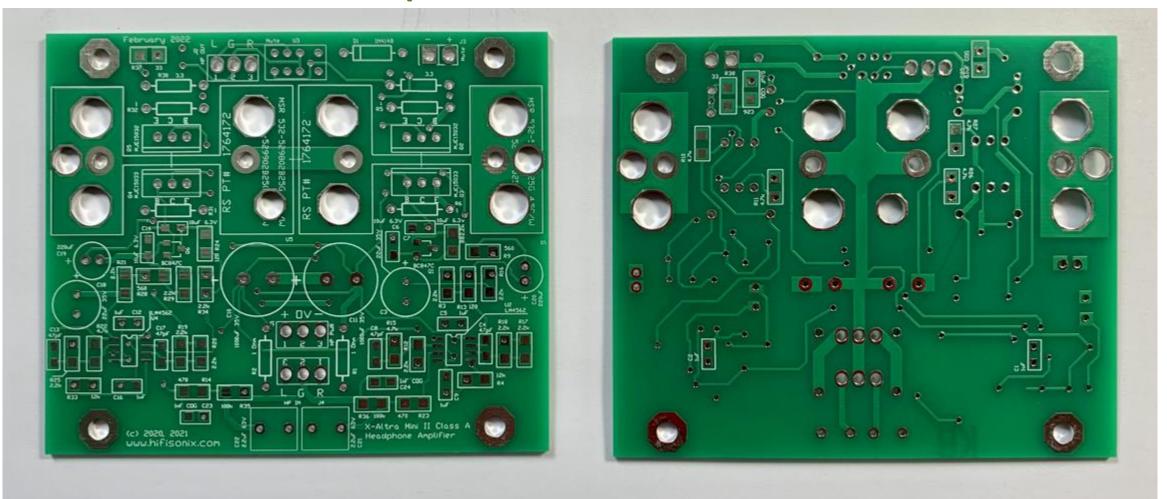
A DSTHP Silk Screened PCB is available for this project here:-X-Altra HPA-1 Class A Headphone Amplifier (hifisonix.com)


Updated 15 May 2023 to reflect latest schematics and PCB

www.hifisonix.com

Andrew C. Russell © 2012, 2018, 2021

X-Altra HPA-1 Class A Headphone Amplifier Specifications


- Class A 13V pk~pk into 32 Ω s
- Class AB 13V pk~pk to 21 V pk~pk
- Output power : 32 $\Omega~$ = 1.75 Watts; 300 Ω 187.5 mW; 93.75 mW into 600 Ω
- Very high damping factor of ~3000 into 32 Ohms with the addition of L1 and L2 see schematic for details)
- Very low distortion see measurements later in this document
- Rise/fall time <500ns (see measurements)
- Frequency Response 2Hz to 330 kHz; 20Hz to 20 kHz -0.1dB*
- Full power bandwidth 450 kHz (20V pk-pk into 33 Ω)
- Power consumption +-15V at 90 mA per channel; short circuit output current c. 300 mA
- Gain = 3.13x. Can easily be changed to higher values as required

X-Altra HPA-1 Class A Headphone Amplifier

w w w .hifisonix.com May 2022

Picture of PCB – top side and bottom side

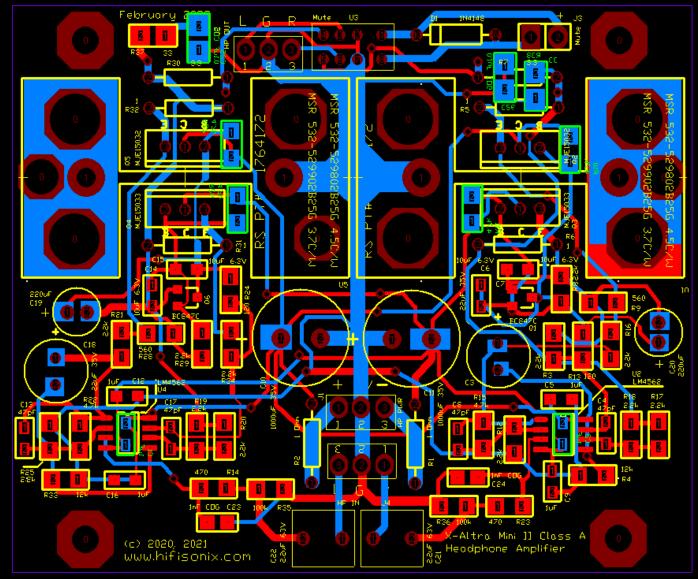
The large holes in the PCB allow airflow up through the vertically mounted heatsinks. The temperature rise above ambient for 45mm high heatsinks is about 8 C (Image updated 15 May 2023)

Circuit Description (refer to Left Channel – right channel is identical)

- The input signal is fed into U4 (LM4562 or OPA1642) non-inverting input pin 3 via DC blocking capacitors C21 and C22. Input signal bandwidth limiting is provided by the low-pass filters consisting of R14 and C23 (left channel) and R23 and C24 (right channel). R22 and R25 set the 1st stage gain at 3.13x with C13 providing some HF compensation. The first stage gain may be increased if required by reducing the value of R25 (see addendum 1).
- The output of the first stage appears at pin 1 of U4 and feeds into the second stage non-inverting input pin 5 via C18 (22uF bipolar capacitor) with R33 providing input bias. The opamp output at pin 7 feeds the output stage via R24 (120 Ωs). Q5 (MJE15032 and Q4 (MJE15033) form a push pull output stage.
- Q6 (BC847C) is arranged as a bias controller and keeps the output stage in class A with a standing current of 90mA +-5mA over temperature (180mA peak class A). If the output load current demand is higher than this, the OPS transitions to class AB. On a 32 Ω load, this will happen at about 13V pk~pk.

 The output stage current is measured across degeneration resistors R31 and R32 (1 Ω each) and scaled by R28 (560 Ωs) and R29 (2.2k). The OPS standing current *Iq* is

$$Iq = \frac{\left[Vbe_{Q6} \cdot \frac{R29 + R28}{R29}\right] - Vbe_{Q4}}{R31 + R32}$$


- For the values chosen and measured V_{be} = 0.625 for Q6 and 0.592 for Q4 it calculates to 96mA. Figures of 94mA and 96mA were measured after 1 hour warmup. Directly after switch-on, they measured 91mA and 92mA respectively.
- Note that for smaller values of R28 (which gives lower OPS standing current), the <u>spread</u> in standing current increases due to the variation in the Vbe of Q6 and Q4, which may be as great as 35 to 40mV between the two transistors, and the resistor tolerances.
- C14 and C15 provide filtering and decoupling, while C19 (220uF) bootstraps the bias controller circuit so that at LF and large output voltage swings, the bias control voltage remains constant. Without it, LF distortion increases because the bias control voltage collapses (See measurements later on) at high output voltage swings.

- R27 and R27 provide DC bias paths for the bias controller and OPS. These could be replaced with
 active current sources for even lower distortion, but at the measured levels, there is no point given
 the added complexity
- R21 and R34 bootstrap the opamp output stages into class A by tapping off the transistor side of the OPS emitter degeneration resistors so the complete headphone amplifier operates in class A – the opamp stages and the output stage. The first gain stage it bootstrapped to 30uA and the OPS driver opamp to 300uA. Both opamps remain in class A up to 20 V pk~pk output.
- Overall global loop feedback is taken from the junction of R31 and R32 via R19 and R20 (2.2k each) in parallel with loop compensation provided by C17 (47pF)
- The opamp rails are decoupled with C13, C16 and C1 and C2 (C2 for the RH channel) directly across the rails under each opamp.
- Bulk decoupling and isolation from the main power supply is provided by R1 and R2 (1 Ω) and C10 and C11 (1000uF 35V each).
- The amplifier output is coupled to the headphones via a 3.3 Ω resistor (R30) to isolate any load and cable capacitance and then via a muting relay (U3). L1 and L2 in parallel with R7 and R30 were added in September 2022 and result in dramatically lower output impedance of c. 10 milli-Ohms at 1kHz, providing a damping factor of over 3000 into 32 Ohms. This improves the bass performance on large diaphragm open back headphones.
- If you do not need the mute function, simply link the relay out, but be aware, at turn on and turn
 off, the amp will produce a loud 'plop' at the output. If you are using the <u>recommended power</u>
 <u>supply</u>, a mute function is incorporated on the PSU.

Some Questions Answered

- Can I use different opamps with this circuit?
 - There is no reason why any other <u>dual unity gain stable</u> opamp cannot be used with this circuit. However, you will have to check that the amplifier is stable, and it may entail adjustment of the value of C17. See Addendum 3 further opamp type measurements.
 - Measurements using the OPA1642 are provided on the HPA-1 webpage; the OPA1652 will also work well; the OPA16XX devices are high performance JFET/CMOS input opamps featuring very low distortion. TLO72 devices will also work, but the distortion will be about 5x higher.
- What size PSU will I need?
 - Since the standing current is high (2 x 95mA), the PSU should be oversized. A 12-15VA PSU is recommended at +-15V. The PSU must be regulated with eg 7815/7915 or LM317/337 type devices. <u>The recommended PSU is here.</u>
- How loud can the HPA-1 play?
 - Louder than is tolerable with negligible distortion. On 90 dB/mW sensitivity headphones, the X-Altra will generate 122 dB SPL which is about 6 dB greater than loud rock concert levels. Please use this web based tool to calculate your headphone requirements <u>Headphone drive</u> <u>requirements</u> and see addendum

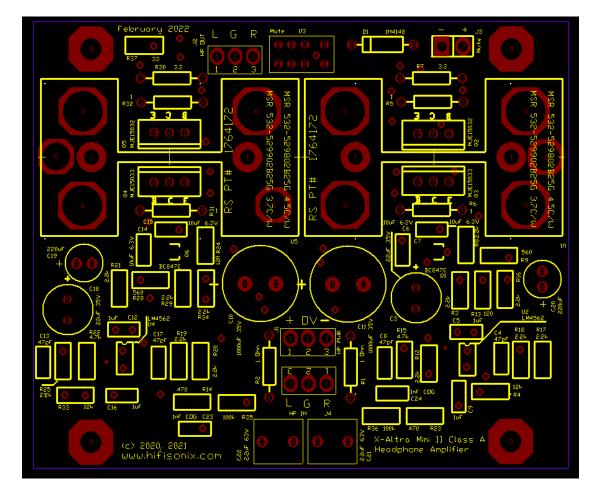
Board Layout (the PCB has both channels on it)

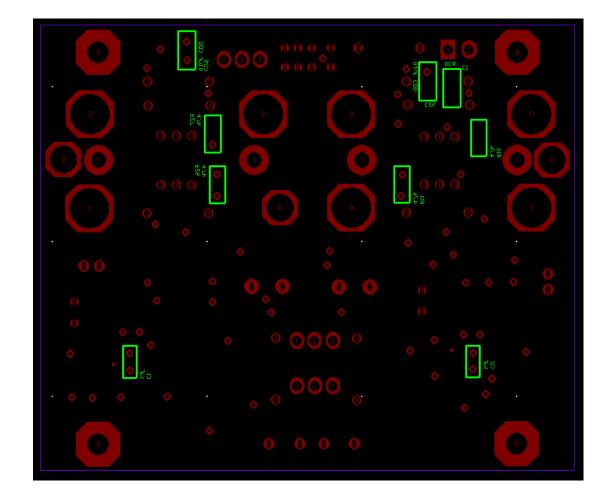
The finished stereo PC board measures 87.5 mm x 72.5mm x 1.6mm thick.

The recommended PCB mount heatsinks stand 45 mm high.

Attention: The leaded resistors are standard 6.5mm in length. Do not use 9.5 or 10 mm length resistors as they will not fit on the board.

All SMD resistors are 1206 thin film.

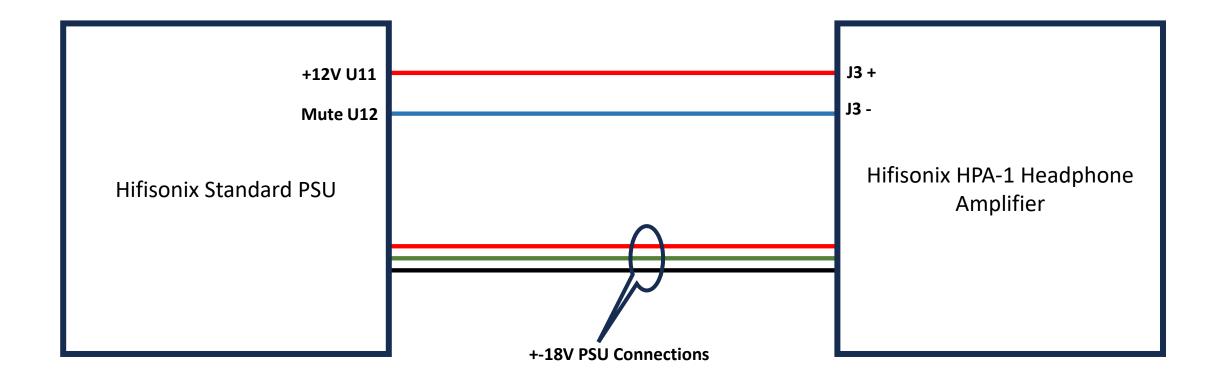

All SMD capacitors are 1206 or 0805


See BOM for specific Mouser part numbers.

LZ/US/ZUZI

fier

Component Overlay


Bottom Side Overlay

Top Side Overlay

X-Altra Mini II Headphone Amplifier www.hifisonix.com

12/03/2021

How to wire the HPA-1 to the Hifisonix Standard PSU to enable the Mute Relay Function

Calculating dB SPL given headphone sensitivity vs voltage drive parameters (accurate to within about 0.4 dB)

$$dB SPL = P_{sens} + 10_{log} [(V^2/R)*1000]$$

Where SPL = sound pressure level in dB

V

R

P_{sens} = headphone sensitivity in dB/mW

= amplifier drive RMS voltage

= rated headphone impedance

Example:-

Headphone sensitivity is 100 dB/mW and impedance is 32 Ω Drive voltage from the amplifier is 5V RMS The resultant SPL level is 100 + 10_{log}[(5²/32)*1000] = 129 dB SPL (very loud – threshold of pain)

Attention: Extended exposure to SPL levels above 105 dB will lead to permanent hearing damage

dB SPL Levels - Reference

The chart on the right gives a good guide to SPL levels of everyday sounds.

Attention: Extended exposure to SPL levels above 105 dB will lead to permanent hearing damage

EAV = Exposure Action Value ELV = Exposure Limit Value dB(A) = 'A' weighted decibels

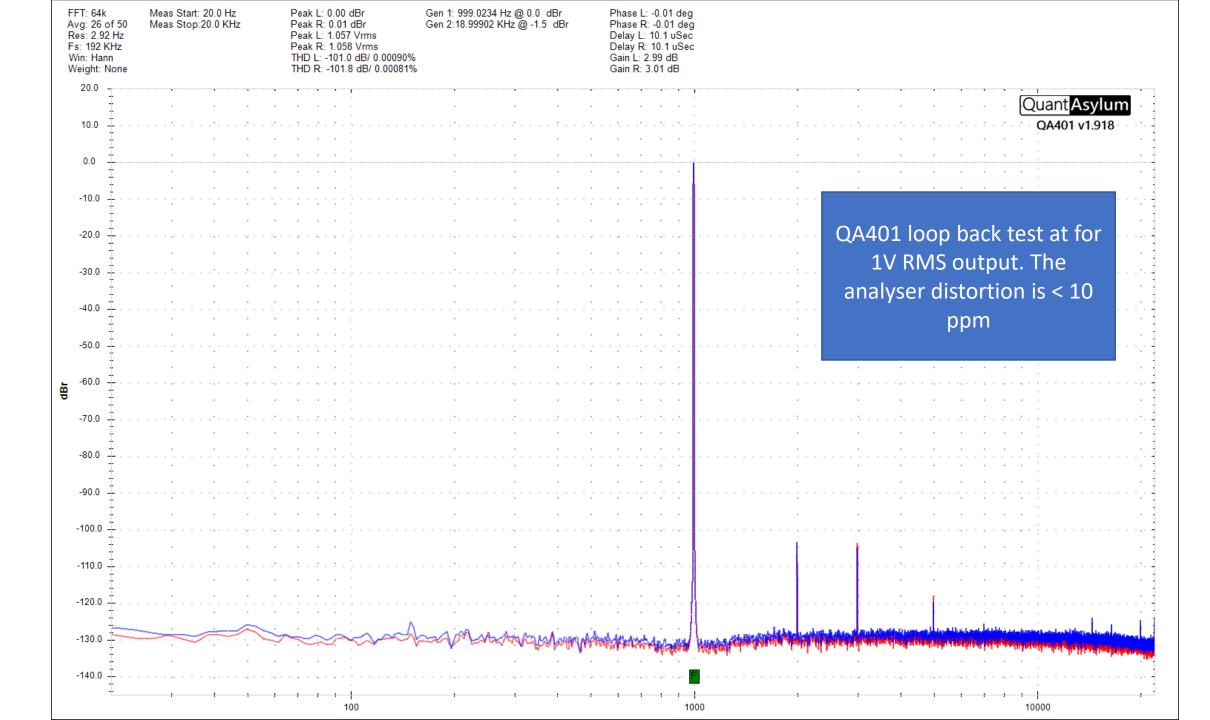
(to replicate human hearing)

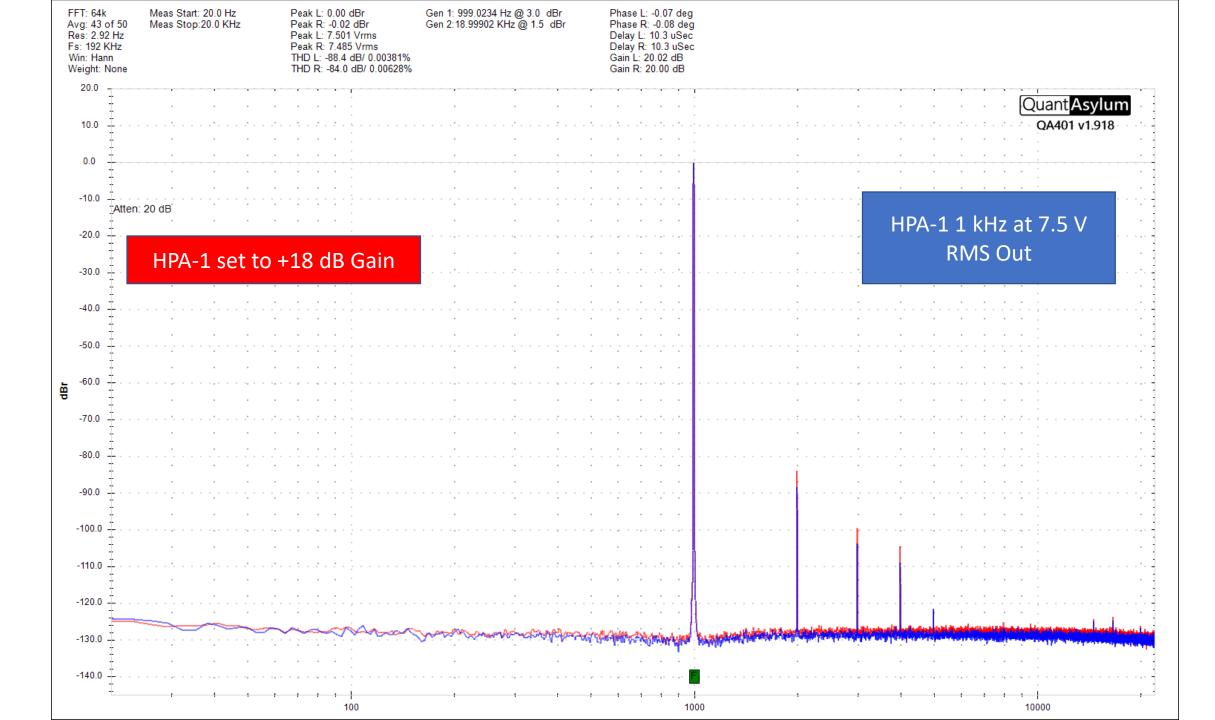
© Copyright Pulsar Instruments Plc. 20

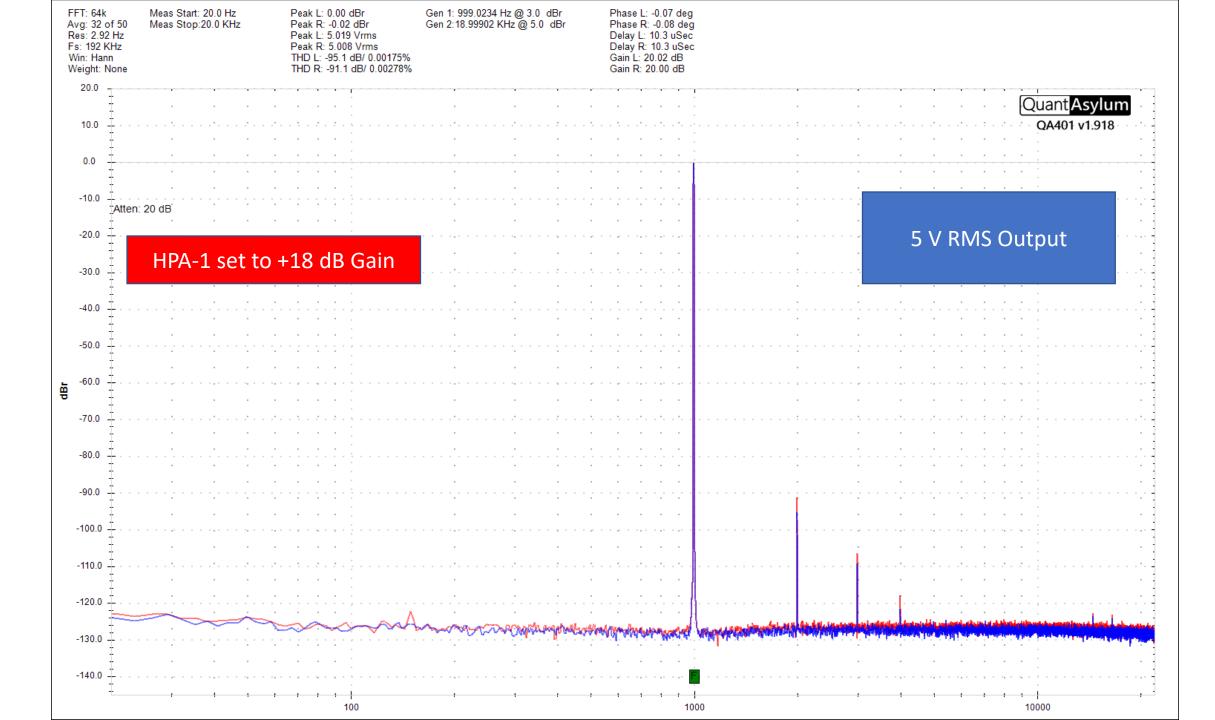
dB(C) - 'C' peak weighted decibels for

beak sound pressure

Know Your

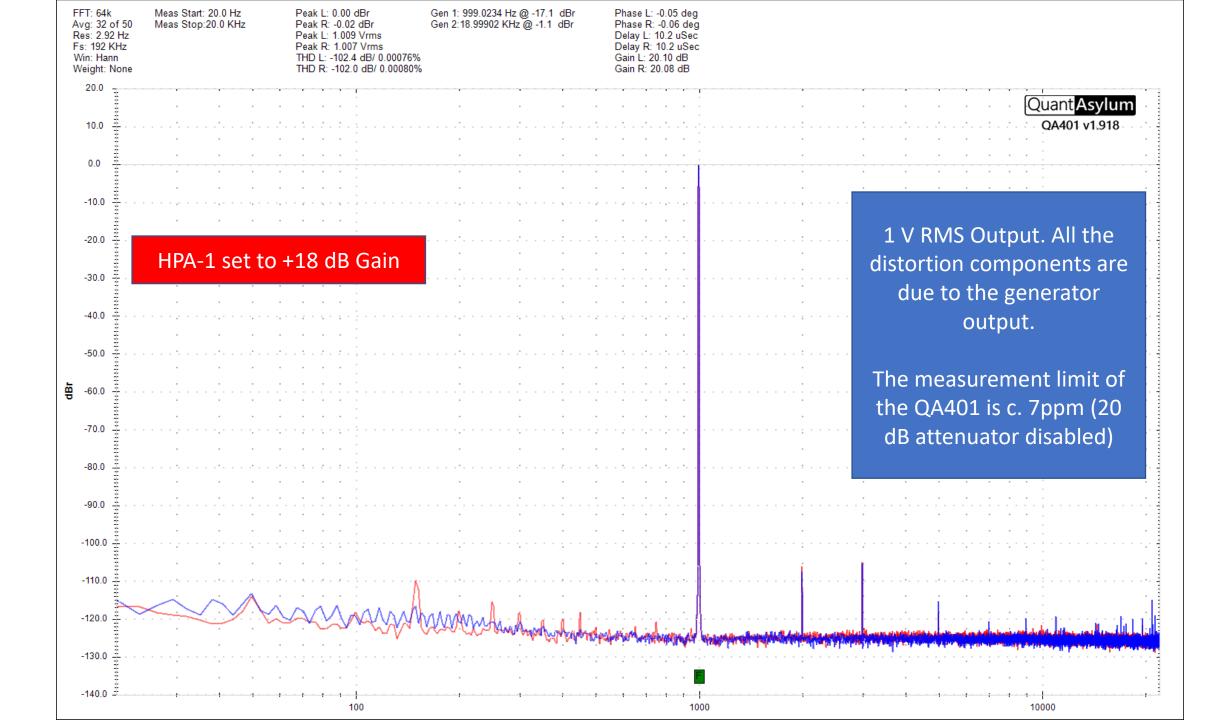

Chart courtesy 'Pulsar' Instruments Plc


X-Altra Mini II Headphone Amplifier www.hifisonix.com


X-Altra HPA-1 Measurements

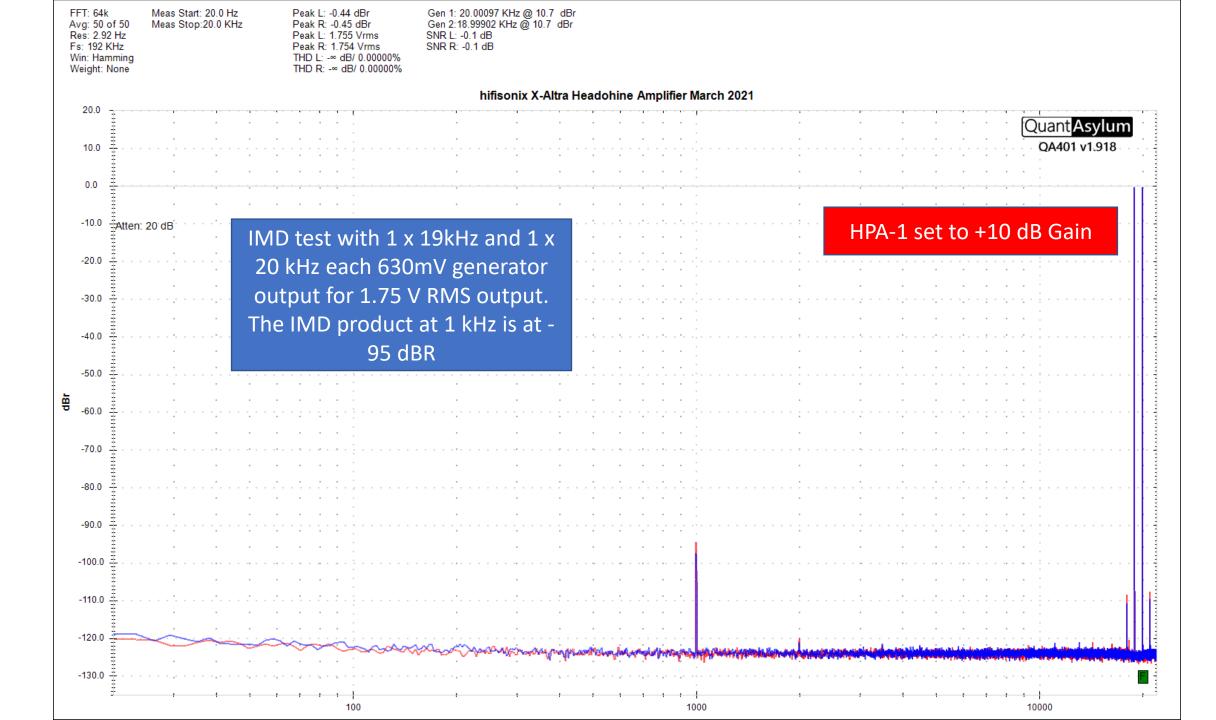
- All measurements were taken using a Quant Asylum QA401 with a 33 Ω resistive load on both channels.
- The standard gain of the HPA-1 is 10dB. Because the amplifier distortion is well below the QA401 (simulated at 400 parts per billion), a first set of tests was done with the HPA-1 first stage gain set to 7.84x (~18 dB).
- This ensured that the QA401 output was around 1 V RMS for >7 V RMS out from the headphone amplifier, therefore minimizing the distortion contribution from the analyser and enabling the HPA-1's true performance to be better gauged.
- A second set of measurements was then done with the standard gain of 10 dB
- The unit was powered by a <u>25W +-15 V linear PSU</u> for all the tests

Andrew C. Russell March 16/17 2021



FFT: 64k Avg: 34 of 50 Res: 2.92 Hz Fs: 192 KHz Win: Hann Weight: None	Meas Start: 20.0 Hz Meas Stop:20.0 KHz	Peak L: 0.00 dBr Peak R: -0.02 dBr Peak L: 2.989 Vrms Peak R: 2.982 Vrms THD L: -100.4 dB/ 0.00095% THD R: -96.8 dB/ 0.00144%		Phase L: -0.08 deg Phase R: -0.08 deg Delay L: 10.3 uSec Delay R: 10.3 uSec Gain L: 20.02 dB Gain R: 20.00 dB	
20.0		· · · · ·	·····	· · · · · · · · · · · · · · · · · · ·	QuantAsylum
10.0					QA401 v1.918
ŧ					
0.0					
-10.0		• • • •			· · · · · · · · · · · · · · · · · · ·
Atten	n: 20 dB				3 V RMS Output. Up to
-20.0					
	HPA-1 set to	+18 dB Gain			about 3 V RMS output,
-30.0				·····	almost all the distortion
-40.0					contribution is from the
-40.0					
-50.0					analyzer.
ë -60.0				nininini in anti-	
-70.0					
-70.0					
-80.0					and a second
		· · · · ·			· · · · · · · · · · · · · · · · · · ·
-90.0	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
100.0		· · ·]			
-100.0 + · · ·					
-110.0					
					and the second
-120.0					Trees and here here at addition of the second statement of the second statement of the second statement of the
120.0			220 manaharaah Managala	residentified sectors and an and a sector of the sector of	والمحافظ المحافظ والمحافظ والمحاف
-130.0 + · · ·				· · · · · · · · · · · · · · · · · · ·	
-140.0	· · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		100		1000	10000

FFT: 64k Avg: 34 o Res: 2.92 Fs: 192 K Win: Hanr Weight: N	of 50 Hz Hz n	Meas Meas	Start: Stop:	20.0 H 20.0 K	lz Hz		Pea Pea Pea THE	k L: 0. k R: -(k L: 2. k R: 2) L: -9) R: -9	0.02 d 015 .011 7.7 d	dBr Vrms	Gen 2:	999.023 18.9990	14 Hz @ 2 KHz @	-17.1)-7.1	dBr dBr	 	Phase Delay I	R: -0. .: 10.1 R: 10. 20.0)5 deg 06 deg 2 uSec 2 uSec 9 dB 8 dB													
20.0	1				• •	• •		•					· · ·		••••			· · · ·	•••				•••				• • •	 C				
10.0	-																											ť		401 v1	ylum	
10.0	F···								- 1			•	•			•			•										Qr	401 01	.910	
0.0	L			•	•	•	•						•			•			•				•			• •	•					·]
	Ĩ																															
-10.0	.						÷.																									
	-								- 1															2	2 V	RM	S O	utr	out			.]
-20.0	‡ · 🔳											•••••			:		· · ·				:											- 4
		H	PA-	1 s	et t	0 -	+18	3 d	B (Gain									1													
-30.0	₽ · 💻												••••••••					• • •	1.1										. : .			
																							N	ote	: th	e 2	0 d	Ва	nal	yser		•]
-40.0 -	F								11								· · · ·									ato						
-50.0																								alle	inu		113		av	leu		
-50.0	F · · ·																															
- 60.0	ŧ														·												:					. 1
σ	-																											• •	1			
-70.0	ŧ																															
	-								- 1																							
-80.0	ŧ																• • •				:				•••••		:		· : ·			
-90.0	I			• • • •									• • • • •														•••		÷			
									- 1																				1			.]
-100.0	±			• • • •		• • •			- 1						• • • •				14.1								••••					1.1
-110.0 -																									-				÷			
-110.0																																
-120.0 -	ŧ														·		• • •										;		. : .]
.20.0			~	\bigcirc		\sim	\rightarrow	Ň	à	sant	more	man	AN A	. 0	1													. i i			1. 1	
-130.0	¥							~ `		- Y ~		~~~~~	a Ada	Wy	ann	veryb	WEDAY	cole in	Mid	harpothics	-	the help the				- J-Chipley	al yekili Tayan ye		al de la composión No se composión de la composión	ارمار ڪيورانا ٿي. دور ڪرورون	No.	
	=																														1 town	
-140.0 -	ŧ					, .			• • †						,		• • •										;					.,
									10	0									10	00									10000			


Phase L: 0.00 deg
Phase R: -0.01 deg
Delay L: 10.1 uSec
Delay R: 10.1 uSec
Gain L: 0.00 dB
Gain R: 0.00 dB

hifisonix X-Altra Headohine Amplifier March 2021

								nitiso		ппа неа	adoni	ne Am	pimeri	warch 2021	
10.0					· · ·						- · ·	· · ·			Quant <mark>Asylum</mark> QA401 v1.918
-10.0	 •	•	•	•	· · ·	•	· · · · · · · · · · · · · · · ·		•	•	• • •	• •			
-20.0	 •	•	•						•	•					This is the noise and distortion
-30.0												· ·			of the QA401 audio analyzer only in a single ended
-40.0	 •	•	•		· · ·	•			• • • • • •	•	· · ·	· · ·	• •		loopback test. Analyzer output is +5 dBV or c. 1.75 V
-50.0	 · · · · ·	· · · · ·		· · · ·	: · · ·	•			· · · · · ·	•	· · · ·	•	· · · · ·		RMS. This is double the
-70.0	 •	•	• •		· · · ·	•			• •	•	· ·	· ·	· ·		distortion at 1 V RMS output
-80.0	 •	•	•	• ••••	· · · · · ·	• • •		· · · · · · · ·	• • • • • •	•	• •	· ·	· ·		·
-90.0				:	· · ·					· · · · ·		· · · ·			
-100.0	 •	•	• • •	чт. Т	 	•	· · · · · · · · · · · · · · · · · · ·		• • • • •	•	· · · ·	· · · · ·	· · · · ·		
-120.0		•		•					•			• •			
-130.0			÷	in a c				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	÷:AiA:F	windy	100		WARNed	height as set in side of	
-140.0		 							• •	•	· · ·	· ·	· · · - + - +- 1		· · · · · · · · · · · · · · · · · · ·

FFT: 64k Avg: 33 of Res: 2.92 Fs: 192 KI Win: Hami Weight: N	f50 Me Hz Hz ming	eas Start: eas Stop:	20.0 Hz 20.0 KH	z	P P P T		14.01 5.026 5.017 88.3 d	dBV Vrms	SNR L:	999.0234 Hz 20.00097 KH 92.4 dB 93.2 dB	z @ 5.0 łz @ -34	dBV .0 dB∖		Phase Delay	e R: -(/ L: 10 / R: 1(L: 9.0		9									
										hifiso	nix X-	Altra H	leado	hine	Amp	olifier N	March 2021									
20.0																							Юu	antA	svlur	n ·
10.0											·		•										<u> </u>	A401 v		
0.0																						• •				
-10.0	Atten: 20 o	dB)																			
-20.0 -			•									:	:		:		HPA	A-1 in	to 33	Ωs	at 5	V R	MS	. Wł	nen	
-20.0 -		VUL	1.00	+ + 0	 1			Gain			•	•	•	•	•		u	ising t	:he 20) dB	att	enu	ato	r, th	e	
-30.0 -		IPA-	1 26		± 1	.00		Jain										asure								
-40.0		•					•				•	•		· · .	•											
-50.0												• • • •			••••											• • • •
Å -60.0 -																	•		· · · · · ·							
U U															•											
-70.0 -		••••																	• • • • •							•
-80.0																						• •				
-90.0 -			· · . · · ·						· · · · .		···· ·	••••				 			i i i i i i			 				• • • •
-100.0															·•• ·								1			•.
440.0											:				:	· ·						· ·			. 1	
-110.0 -		~	\sim	~	~		-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NAMA	WAR.A	Ming	win		Xilio	-	Lune Martin Carlos Martin	Hilly Approved		K PARA I	i la prima de Ne Maistra da	in alla Nevenae	P. Para		بالسلم	
-120.0 -			• • • • •											** 1 	. H tea	वम्प्रमू	a An an		e a e qu						والمعلميت بهما	And a second
-130.0 -			•	•			: :				•	•		•			; 			•	•		•			•
-140.0	:	- p					10	0	· · · · ·							10			r · · · · · · · · · · · · · · · · · · ·			; . , .	1000	0		

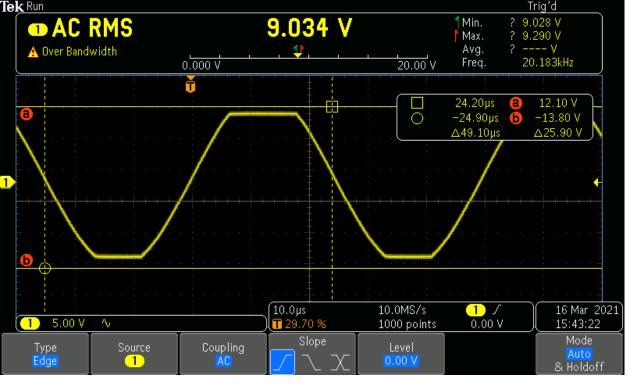
FFT: 64k Avg: 50 of Res: 2.92 I Fs: 192 KH Win: Hamr Weight: No	Hz Hz ning		SNR R: 91.0 dB 00167%	.0 dBr /3.0 dBr	Phase L: -(Phase R: - Delay L: 1(Delay R: 1 Gain L: 9.0 Gain R: 9.0	0.05 deg 0.2 uSec 0.2 uSec 3 dB								
			hifisonix X	-Altra Hea	dohine Am	olifier Ma	rch 2021							
20.0			· · ·	· · · · ·	F F							O	uant <mark>Asylur</mark>	n
10.0	· · · · · · · · · · · · · · · · · · ·												QA401 v1.918	
0.0		······································	· · · · · · · · · · · · · · · · · · ·											
-10.0	Atten: 20 dB							: .		1.cot	to 110	ם א	Cain	
	•								ΠΡΑ-	I Set	to +1(JUB	Gain	
-20.0								•	•		• •			
-30.0	•	HPA-1 into 33 C	2s at 2.86V RMS			,			• • • • • • •	· · ·	· · ·			
		output. For ma	ny headphones,											
-40.0		this will corres	pond to about			10 - 10 - 10 - 10 10 - 10 - 10		:		ta a a ata. A series				
-50.0			i.e. loud rock			· ·			• • • • • •	• • • • • •				
g g														
• -60.0			The distortion in	1.1.1.2								• • • • •		
-70.0	•	•	st entirely due to								· · ·			
		the QA401 g	enerator. The									•••		
-80.0		simulated distor	tion of the HPA-											
-90.0		1 at 3V RMS o	utput is c. 400			· · · .			•					
			lion at 1 kHz											
-100.0														
-110.0														
				• · ·										
-120.0														
-130.0	\sim		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	stranged week	wolkpoolenter	mand	Manager and Managers	linet distance	h imani h	hingung	and the second second	and the second		
1	;	+ + + + + + + + + + + + + + + + + + +			+ +	• • •		;	,	1 1				
		100				1000)					100	00	

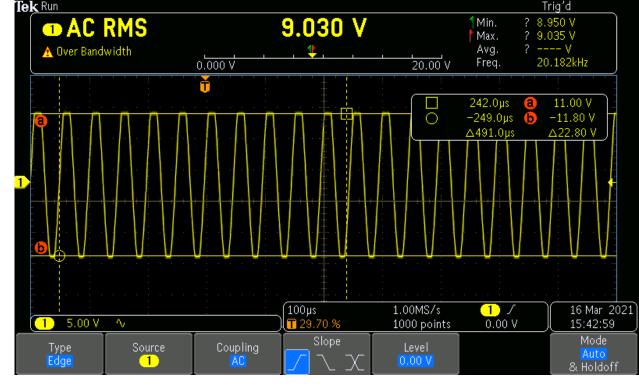
FFT: 64k Avg: 50 of 50 Res: 2.92 Hz Fs: 192 KHz Win: Hamming Weight: None	Meas Start: 20.0 Hz Meas Stop:20.0 KHz	Peak L: -0.67 dBr Peak R: -0.67 dBr Peak L: 1.249 mVrms Peak R: 1.249 mVrms	FR Gen: 17.4 dBr										
			hifisonix	X-Altra Headohi	ne Ampli	fier Marc	h 2021						
10.0	· · · · · · · · · · ·		· · · · · · · · · · · · · · ·			· · · · ·	<u>,</u>					ant <mark>Asylı</mark>	
I													
1							1 · · · · ·			• • • :	. QA	401 v1.91	D
+					• •		:			• • • 1		• •	••••
0.0							<u>.</u>						· · · · · · · · · · · · · · · · · · ·
I I			~~~~~	Manna	adrian	AN AND	a laway with the law	al all him had	equive a fini	(All the statistics)	ومحطولة والمعروماتات	the delakara	
-Atten:	2 <u>0 dB</u>			44 - A - Alia	A contraction	Ja. Itlaa	يغليه يقبين يعارا يتلقن	n ar hillingelk	المحتيية	a parte service de la	n n n n h h h h h h h h h h h h h h h h	The second second	
-							-						The second second
-10.0							:	· · · ·			· · · · · · · · · · · · · · · · · · ·	• • •	· · · ·]
							1			• • • .			
					• •							• •	
Ţ.							1						
-							-						
-20.0 🕂 · · ·							÷ • • • • • • • • • •	· · · · · · ·					
-							1		HPA	-1 set 1	to +10 d	B Gair	<u>ן א</u>
늄 :								. –					;
l I												· ·	· · ·]
-30.0							•	•		• • • [•		1
-													
	Frequen	cy response u	sing the whit	e i			1						
÷							: .						
Ŧ	noise metr	hod. Generato	or set to -60 c	BV .			1						}
-40.0 · · ·	and meas	surement ban	dwidth 2 Hz	0			5 · · · · · · · · · ·			* * ** (* * *			
-					• •		: · ·			• • • .		• •	· · · :
Ţ.	•	80 kHz		100 C	• •		1 · · · ·			• • • •		• •	· · · •
Ī	·												· · ·]
-50.0 · · ·													
‡													!
‡							; · · · ·						
÷							; · · ·			:			· · ·]
I							:			• • • •		· ·	· · ·]
-60.0 -		· · · · · · · · · · · · · · · · · · ·	100	· · · · · · · · · · · ·		1 · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•••••	10000			

FR Gen: 74.5 dBr	FR	Gen:	74.5	dBr
------------------	----	------	------	-----

Peak L: -1.23 dBr Peak R: -1.23 dBr

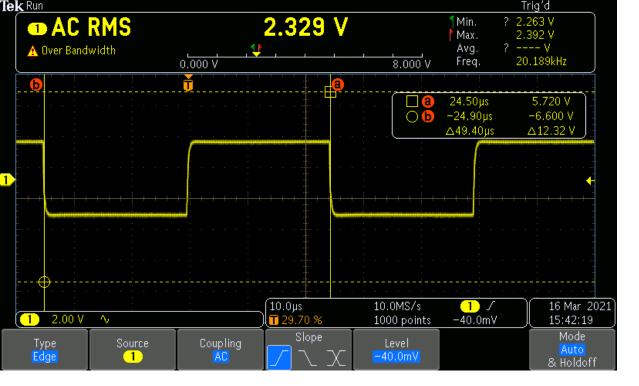
Peak L: 5.192 uVrms Peak R: 5.191 uVrms

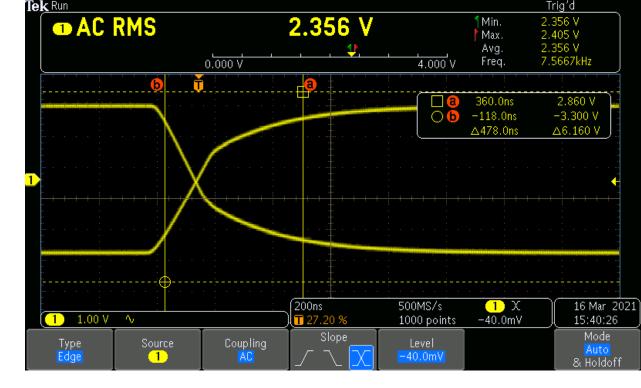

FFT: 64k Meas Start: 20.0 Hz Avg: 50 of 50 Res: 2.92 Hz Fs: 192 KHz Win: Hamming Weight: None


hifisonix X-Altra Headohine Amplifier March 2021

)	hifisor	nix X-Altra Headoh	ine Amplifier March 2021		
+					QuantAsylum
‡ • • • • • • • •					QA401 v1.918
‡ • • • • • • • ;					QA401 V1.918
F			······································		
± • • • • • • • • •					· · · · ·
+ · · · · · · · · · · · · · · · · · · ·					
‡ · · · · · · · · · · · · · · · · · · ·					• • • • •
Ŧ					
± · · · · · · · ·					
+					
+ · · · · · · · ·					
				HPA-1	set to +10 dB Gain
I					
Ι				· · ·	
±					
‡					
-	· · ·				
Ξ					
Frequency	response using the im	pulse			
method Gd	nerator output set to -3				
Heasureme	nt bandwidth is 2 Hz to	80 kHz			
÷ .					
		· · · · · · · · · · · · · · · · · · ·			
Ŧ					· · · · · ·
± · · · · · · · ·					
± · · · · · · · ·					
±					
Ŧ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
£ · · · · · · · :					
J					+ + + + + + + + + + + + + + + + + + + +
10	100		1000		10000

FFT: 64k Avg: 29 of 50 Res: 2.92 Hz Fs: 192 KHz Win: Hamming Weight: None	Meas Start: 20.0 Hz Meas Stop:20.0 KHz	Peak L: 0.00 dBr Peak R: -0.02 dBr Peak L: 2.540 Vrms Peak R: 2.535 Vrms THD L: -92.2 dB/ 0.00246% THD R: -90.6 dB/ 0.00297%		Phase L: 0.41 deg Phase R: 0.41 deg Delay L: -54 nSec Delay R: -10 nSec Gain L: 12.11 dB Gain R: 12.09 dB	
			hifisonix X-Altra He	adohine Amplifier March 2021	
20.0				· · · · · · ·	QuantAsylum
10.0					QA401 v1.918
0.0					
		: : : : : A			
-10.0	• • • • • • • • • • • • • • • • • • • •	e de la caracterí († 1997)	• • • • • • • • • • • • • • • • • • • •		
-20.0					
					This measurement shows the LF
-30.0					distortion at 110 Hz and 2.5 V RMS
-40.0 + · ·					output. This confirms that OPS is
			· · ·		maintaining class A bias at LF. Note
-50.0 + · ·					the noise floor rises at LF. This is
-60.0 ···	· · · ·	· · · · · · · · · · · · · · · · · · ·			
-		[]]			caused by the 'Hamming'
-70.0 + · ·					windowing used in the
-80.0					measurement
-90.0		· · · · · · [· · · · · · · · · · · · · · · · · · ·		
			and the second second		
-100.0 ‡		·			
-110.0 + · ·					
‡ ‡				and the second s	
-120.0 📕 · · ·	$HD\Lambda_1$ cot to	o +10 dB Gain			The second place production of the second
-130.0	TPA-1 Set to				
		· · · · ·			
-140.0 + · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································
		100		1000	10000

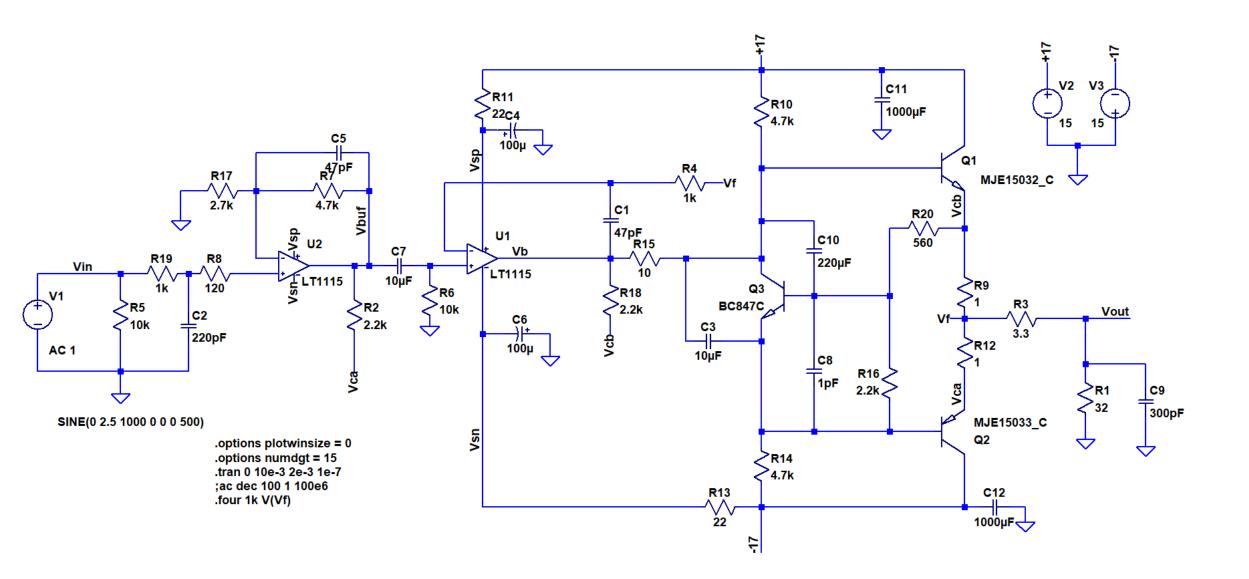


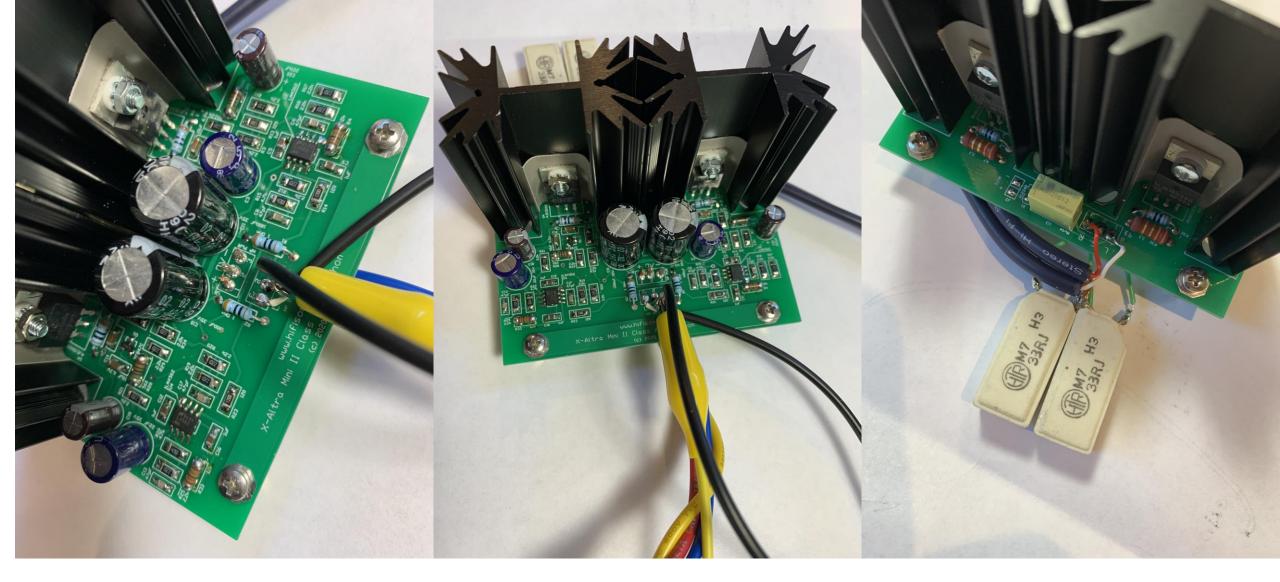


- Clipping is clean with no overhang ('sticky rail') or instability as the HPA-1 exits clipping.
- The positive full rail swing is slightly less than the negative swing due to the Class A biasing arrangement

• Clipping at c. 200 kHz remains clean

 Square wave response at 20 kHz is clean with no overshoot (note: this is into a purely resistive load)




 Rise fall time is c. 500ns – the generator rise/fall time is about 50 ns

- The following capacitive load values in parallel with 32 Ω were tested without stability issues: 47pF, 100pF, 200pF, 470pF, 940pF, 10nF, 22nF, 44nF and 0.1uF.
- The scope shots above show the amplifier performance driving selected capacitive loads. The right channel does not have the capacitive load applied and acts as a visual reference. The HPA-1 is stable with any capacitive load up to the measured limit here of 0.1uF//32 Ωs.

LTspice Model used to develop HPA-1

Some pictures of the HPA-1 PCB taken during testing

HPA-1 Subjective listening tests

- I used an <u>Ovation High Fidelity Model 1501</u> line level preamplifier, an OPPO BD103 BD player and Audio Technica ATH AD900 'Air' Headphones to do the subjective assessment.
- The HPA-1 headroom means that on most headphones, no matter how high the volume, the output remains clean and distortion free.
- The bass is particularly well articulated and attributable to the very high damping factor of over 3000 into 32 Ohm headphones. High damping factor and high current drive capability are especially important on large diaphragm open back headphones where the effective cone mass is high.
- Treble and mid-range are ultra clean with great definition and no hint of any sibilance.
- The HPA-1 will work well with any kind of music rock, jazz and classical.

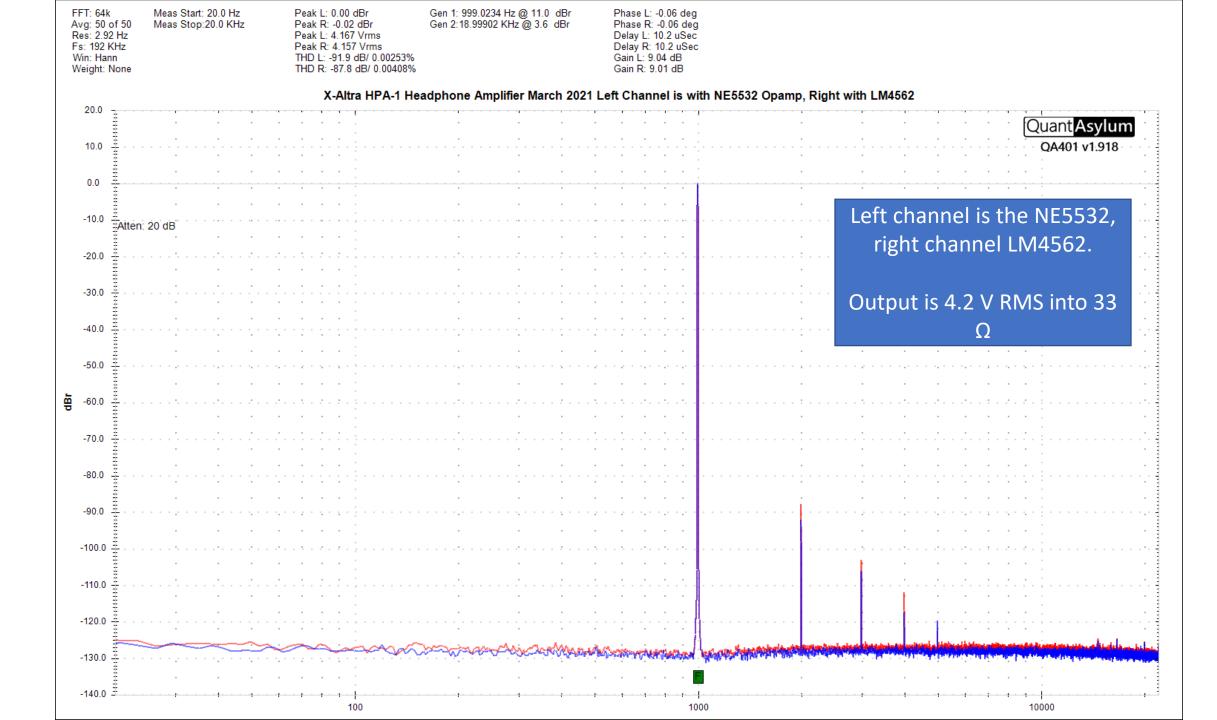
References and Further Reading

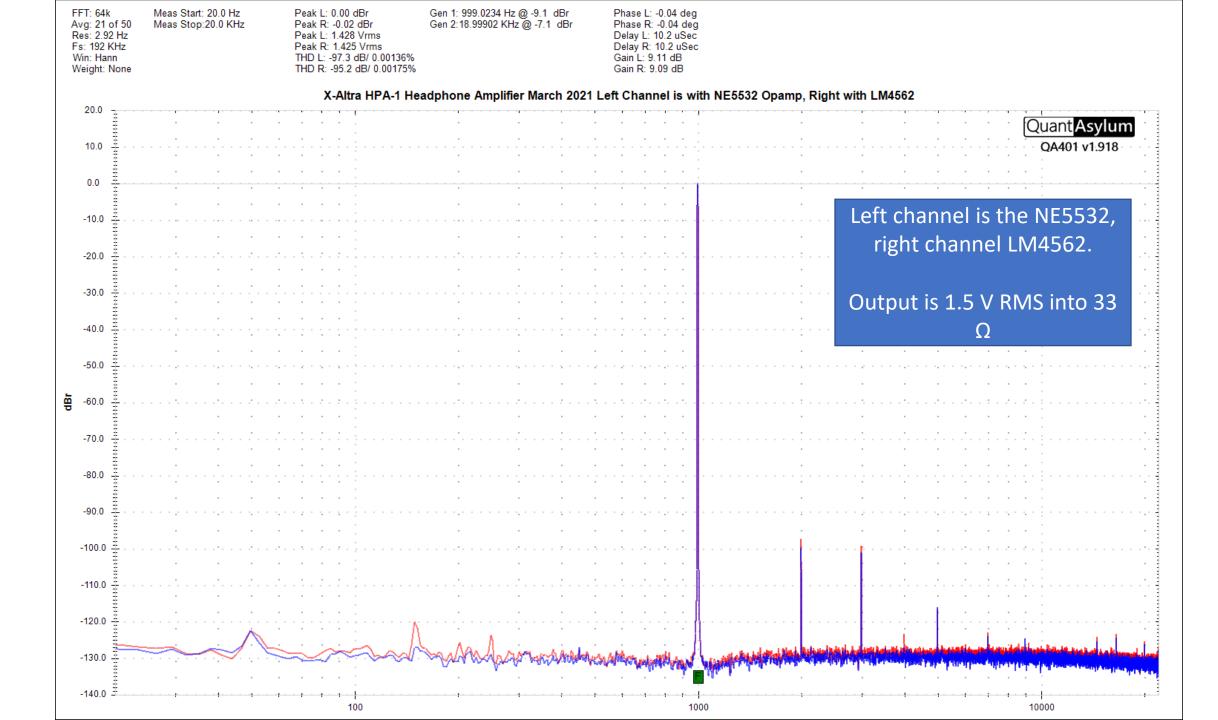
- https://blog.son-video.com/en/2016/08/understanding-the-impedance-and-sensitivity-of-audio-headphones/
- <u>Understanding Headphone Power Requirements (ranecommercial.com)</u>
- THE RELATIONSHIP OF VOLTAGE, LOUDNESS, POWER AND DECIBELS | Galen Carol Audio | Galen Carol Audio (gcaudio.com)
- <u>Table chart sound pressure levels SPL level test normal voice sound levels pressure sound intensity ratio decibel comparison chart</u> <u>conversion of sound pressure to sound intensity noise sound units decibel level comparison of common sounds calculation</u> <u>compression rarefaction loudness decibel dB scale ratio factor unit examples - sengpielaudio Sengpiel Berlin</u>

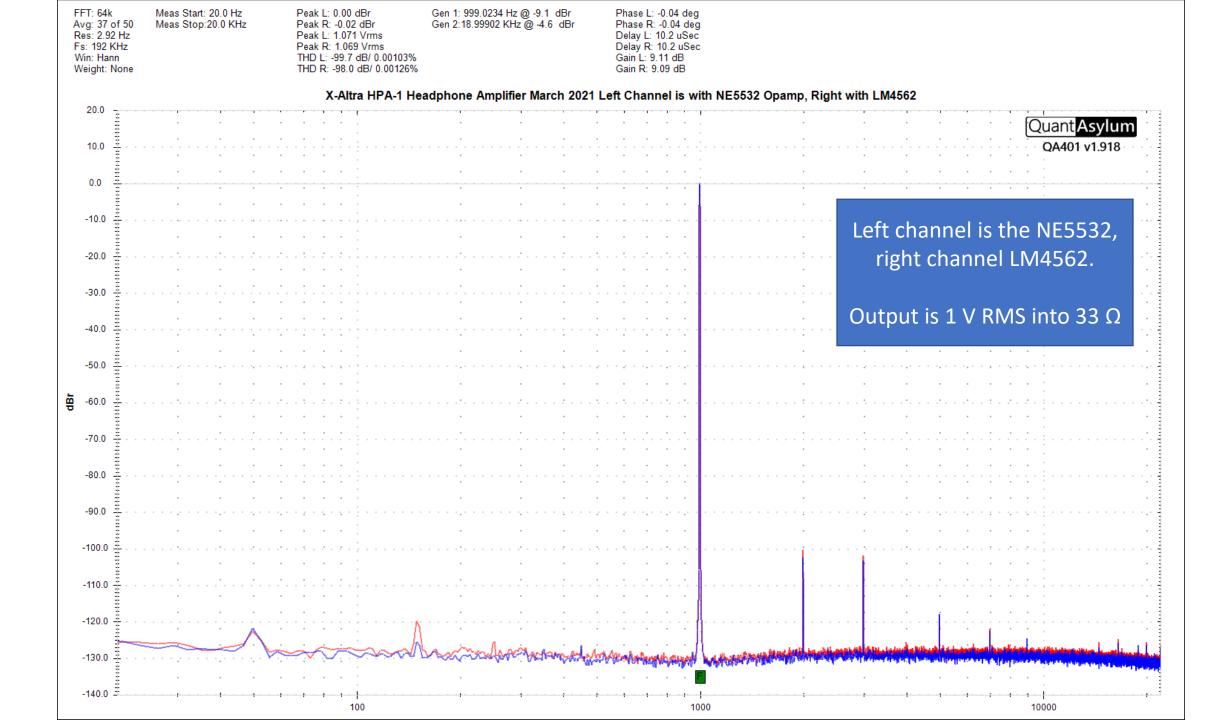
Addendum 1 - How to increase the gain of the X-Altra HPA-1

This is the standard X-Altra HPA-1 gain and suitable for normal 1V RMS line level outputs and c. 90 dB/mW Headphones

R12 and R25 Value in Ω	Gain Magnitude	Gain in dB
2200	3.14	9.9
1800	3.61	11.2
1500	4.13	12.3
1200	4.92	13.8
1000	5.70	15.1
820	6.73	16.6
680	7.91	18.0
560	9.39	19.5
470	11.00	20.8
390	13.05	22.3
330	15.24	23.7


Addendum 2 – Loudness in SPL vs sensitivity for typical headphones (104dB/mW)


		600 Ohm - 104 db/mW			300 Ohm - 104 db/mW			80 Ohm - 104 db/mW			32 Ohm - 104 db/mW		
Listening L	oudness	Voltage Needed	Current Needed	Power Needed	Voltage Needed	Current Needed	Power Needed	Voltage Needed	Current Needed	Power Needed	Voltage Needed	Current Needed	Power Needed 1 -
	85 dB SPL		0.15 mA			0.2 mA		0.03 Vrms	0.38 mA		0.02 Vrms	0.63 mA	0.01 mW
Moderate	100 dB SPL	0.49 Vrms	0.82 mA	0.4 mW	0.35 Vrms	1.17 mA	0.41 mW	0.18 Vrms	2.25 mA	0.41 mW	0.11 Vrms	3.44 mA	0.38 mW
Fairly Loud	110 dB SPL	1.55 Vrms	2.58 mA	4 mW	1.09 Vrms	3.63 mA	3.96 mW	0.56 Vrms	7 mA	3.92 mW	0.36 Vrms	11.25 mA	4.05 mW
Very Loud	115 dB SPL	2.75 Vrms	4.58 mA	12.6 mW	1.94 Vrms	6.47 mA	12.55 mW	1 Vrms	12.5 mA	12.5 mW	0.63 Vrms	19.69 mA	12.4 mW
Painful	120 dB SPL	4.89 Vrms	8.15 mA	39.85 mW	3.46 Vrms	11.53 mA	39.91 mW	1.79 Vrms	22.38 mA	40.05 mW	1.13 Vrms	35.31 mA	39.9 mW


Table courtesy 'Audio Science Review'

Addendum 3 – NE5532 Used in Left Channel, LM4562 in right channel - Measurements

- For these tests, the LH Channel opamp was replaced with a NE5532 workhorse opamp and some of the key measurements repeated.
- There is no difference in the 20Hz 20 kHz distortion measurements between the NE5532 and the LM4562.
 - The right hand channel LM4562 distortion actually read a little higher than the NE5532 this was due to differences in the analyser readings and a slightly lower distortion (few ppm) on the left hand channel which is evident from the original all LM4562 measurements done on the 16/17 March 2021.
- HF performance (i.e. >> 20 kHz) as expected is not as good as the LM4562 due the lower GBW
- The full power 20 V pk-pk power bandwidth using the NE5532 is 90 kHz vs 450 kHz for the LM4562. This frequency is onset of visually discenable slew rate limiting
- The capacitive load tests were also repeated and are virtually identical to the LM4562 results. The HPA-1 using the NE5532 is stable into any capacitive load from 47pF to 0.1uF //32 Ω
- Conclusion: the NE5532 may be used with the X-Altra HPA-1 and over the audio band will
 give similar measurement results to those where the LM4562 opamp was used.

